Approaches to Adaptive Stochastic Search Based on the Nonextensive Q-Distribution
نویسندگان
چکیده
This paper explores the use of the nonextensive q-distribution in the context of adaptive stochastic searching. The proposed approach consists of generating the “probability” of moving from one point of the search space to another through a probability distribution characterized by the q entropic index of the nonextensive entropy. The potential benefits of this technique are investigated by incorporating it in two different adaptive search algorithmic models to create new modifications of the diffusion method and the particle swarm optimizer. The performance of the modified search algorithms is evaluated in a number of nonlinear optimization and neural network training benchmark problems.
منابع مشابه
Neural networks training and applications using biological data
Training neural networks in classification problems, especially when biological data are involved, is a very challenging task. Many training algorithms have been proposed so far to improve the performance of neural networks. A popular approach is to use batch learning that employs a different adaptive learning rate for each weight. Most of the existing algorithms of this class are based on the ...
متن کاملEvolving Stochastic Learning Algorithm Based on Tsallis Entropic Index
Abstract In this paper, inspired from our previous algorithm, which was based on the theory of Tsallis statistical mechanics, we develop a new evolving stochastic learning algorithm for neural networks. The new algorithm combines deterministic and stochastic search steps by employing a different adaptive stepsize for each network weight, and applies a form of noise that is characterized by the ...
متن کاملA Differential Evolution and Spatial Distribution based Local Search for Training Fuzzy Wavelet Neural Network
Abstract Many parameter-tuning algorithms have been proposed for training Fuzzy Wavelet Neural Networks (FWNNs). Absence of appropriate structure, convergence to local optima and low speed in learning algorithms are deficiencies of FWNNs in previous studies. In this paper, a Memetic Algorithm (MA) is introduced to train FWNN for addressing aforementioned learning lacks. Differential Evolution...
متن کاملNonextensive aspects of small-world networks
We have discussed the nonextensive aspects of degree distribution P (k) in Watts-Strogatz (WS) small-world networks by using the three approaches: (a) the maximum-entropy method, (b) hidden-variable distribution and (c) stochastic differential equation. In the method (a), P (k) in complex networks has been obtained by maximizing the nonextensive information entropy with the three constraints: <...
متن کاملCombination of Approximation and Simulation Approaches for Distribution Functions in Stochastic Networks
This paper deals with the fundamental problem of estimating the distribution function (df) of the duration of the longest path in the stochastic activity network such as PERT network. First a technique is introduced to reduce variance in Conditional Monte Carlo Sampling (CMCS). Second, based on this technique a new procedure is developed for CMCS. Third, a combined approach of simulation and ap...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- I. J. Bifurcation and Chaos
دوره 16 شماره
صفحات -
تاریخ انتشار 2006